
Performance and User-friendliness of
low-level and higher-level deep neural
network frameworks

Team: J3

Members: Jack Gu, Joseph Gozum, Justin Lam

Deep Learning

An ever growing field

with a multitude of

different programming

frameworks that

provide high-level

programming interface

(e.g. Python, C++, etc)

API Levels

Goal of Project

From the lowest-level (cuDNN) to increasingly higher-level frameworks

(i.e. Tensorflow, Keras), we want to observe a possible increase in

overhead and any other trade-offs as the level of abstraction rises

while we implement the LeNet CNN

¯_(ツ)_/¯

Observations?

Our metric focuses on the time to

classification/inference, measured in

milliseconds.

We’ll then discuss optimizations or

lack thereof that may have been taken

in each framework or in our code.

A discussion on the tradeoff between

frameworks.

cuDNN: Convolution

cuDNN: Convolution cont.

cuDNN: Activation and Pooling

TensorFlow: Filtering and Pooling

TensorFlow: Flattening and Predicting

TensorFlow: Loading MNIST and training

TensorFlow: Training Program

Keras: Loading Data

Keras: Convolution and Pooling

Keras: Prediction

Discussion: PROs and CONs of each API

Code Length

The higher level you go in
APIs, the easier code is to

pickup and learn.

Overall code length is also
shortened in higher-level

implementations.

Time to Inference

An interesting result!

According to our data the highest-level

API took the longest to classify

amongst the code tested on a GPU.

Why might this be?

> Lack of optimization in Keras?

> Superb optimization in Tensorflow?

> Naive implementation on our part?

> All very confusing

Problems and Challenges

Steep learning curve

Server side problems

!!!Being an EE-major!!!

Poor documentation/examples

Questions?

EE147: GPU COMPUTING AND PROGRAMMING

PERFORMANCE COMPARISONS OF VARIOUS

NEURAL NETWORK FRAMEWORKS

Jack Gu (SSID:861203821)

Joseph Gozum (SSID:861201282)

Justin Lam (SSID:861208924)

Contents

Project Idea/Overview . 2

Implementation Details and Documentation . 3

Evaluation/Results . 4

Problems faced . 7

1

Performance comparisons of various neural network frameworks

PROJECT IDEA/OVERVIEW

Background

Machine learning is a technique developed for computers to do what is natural to all

animals, to learn from our experiences. This amazing process can be easily implemented

with various APIs in wide variety of languages. APIs in recent years have become far more

abstracted even leading to one API acting as a backend for another. But what benefits and

costs come of using a higher API than the ones in use as backends? What do we gain from

using Keras over Tensorflow over using cuDNN in terms of performance.

Project Overview

From the lowest-level (cuDNN) to increasingly higher-level frameworks such as Tensor-

Flow and eventually Keras, we observe the possible increase in overhead as well as compare

trade-offs between the aforementioned progamming APIs. The main metric observed betwen

the three APIs will be of time to infer an input image. However, a look at difficulty in imple-

mentation as well as the tradeoff in control offered will also be discussed between the varying

levels. We will mostly ignore the differences between compiled and interpreted languages

but it will be noted.

Page 2 of 7

Performance comparisons of various neural network frameworks

IMPLEMENTATION DETAILS AND DOCUMENTATION

General specifications

For all three programs, we had the goal of training our neural network with the MNIST

training data. This data set consists of images of handwritten single digit numbers, ranging

from 0 to 9. For cuDNN, since there is no training algorithm implemented, we used the

MNIST weights extracted from an online source. We also used these weights across the

programs as they came in a standard [.hdf5] format.

cuDNN

Utilizing the cuDNN API was the most involved of the frameworks because of how low-

level it is in comparison. While in the higher-level APIs, there were simple one line functions

that initialized all the requirements and structures, coding at this level required individual

initialization of all inputs, output, kernels, algorithms used, memory sizes, knowledge of data

movement in non-unified memory, memory allocation. Any possible variable that could be

manipulated needed to be stated before any convolution or pooling could occur.

TensorFlow

The implementation of Tensorflow was much easier than that of cuDNN. Instead of

having to set up each individual filters, Tensorflow allocates the weights to each filter after

training the neural network itself. Pooling and rectified linear operations (Creating rectified

linear units AKA Relu) can also be done automatically with Tensorflow syntax. However,

connecting the layers must still be done manually and individually between all layers. Ex-

tracting results are more complex, as the syntax to retrieve inference results as well as to

even send an inference are complex in nature. As for the training and weights needed for a

neural network, Tensorflow’s syntax makes it possible for training to only be needed once,

with syntax allowing the weights to be saved and automatically loaded in future activations

of the program. Training is also customizable with the epochs (number of training iterations)

customizable.

Keras

For Keras, everything was much simpler to set up with loading data taking one line and

setting up multiple convolution layers in one line. Keras’ high level made it extremely efficient

in terms of code length. For training and testing the weights, once the code was all compiled

for the model, we just had to optimize and let it run through the epochs and save the values

we obtained.

Page 3 of 7

Performance comparisons of various neural network frameworks

EVALUATION/RESULTS

Performance

At the bottom of the paragraph (Fig. 2) is a histogram comparing computation time

needed for a single inference in each of the APIs, as well as a comparison with it’s CPU

counterpart (Tensorflow and Keras are naturally optimized for GPU usage). Unsurprisingly,

the Tensorflow and Keras programs on the GPU outperformed each of its respective CPU

counterpart. In fact, the performance difference between the CPU and GPU version of

Tensorflow was so vast that it just shows how Tensorflow was made for GPU usage. But, out of

all three APIs, Keras actually performed the worst when it came down to running inferences.

So our initial thought was that higher level APIs trade off performance for simplicity. However,

cuDNN did not perform as well as Tensorflow. The poor performance on cuDNN most

likely stems from a naive implementation and could be optimized. Further searching for

an explanation seems to suggest that the reason for this is that Keras does not optimize

Tensorflow that well as a backend API. Our initial theory before looking at the results of our

inferences was that the API used did not matter as we had thought that each API was well

optimized to the point where the only thing different between our programs would have been

syntax/language difficulty.

Implementation

Implementation itself increased exponentially in difficulty the more you went down

the API ladder. As shown in our histogram (Fig. 1), a lot more time and understanding of

Convolutional Neural Networks was needed to implement the neural network the lower

we went down the API rabbit hole, the more we needed to program. This brings up the

argument of control vs execution difficulty. For example, in cuDNN, we have more control

of the memory allocated as well as each individual filter. This makes it ideal for situations

where we have hardware constraints such as memory. However, as you can ask Joseph, the

tedious work makes it hard to execute. This brings up the argument of control vs simplicity

of execution.

Page 4 of 7

Performance comparisons of various neural network frameworks

Figure 1: Lines of Code

Figure 2: Processing Time

Page 5 of 7

Performance comparisons of various neural network frameworks

RUNNING THE CODE(S)

cuDNN

./lenet <filepath-to-test-image>

Tensorflow

python lenet-tensorflow.py

Keras

python lenet-keras.py

Page 6 of 7

Performance comparisons of various neural network frameworks

PROBLEMS FACED

Execution Issues

There were several issues that we encountered along the way: This was Jack and Justin’s

first time learning how to code in Python and most of the time it consisted of using Google

and stackoverflow. There was a steep learning curve as we gradually move down to the

lower frameworks. When other people were also doing their projects within the same server,

sometimes we would hit server issues where our code would get stuck and couldn’t run.

For the cuDNN implementation, for the fully connected layer it’s required to use either

personally written code or as suggested by Nvidia use their proprietary cuBLAS library. There

were problems getting the input tensors into the expected form for cuBLAS to work and as

of right now it has been commented out. So the CNN is only implemented fully up to the

pre-FC layer.

Library issues for cuDNN/cuBLAS

We did not install our necessary libraries or programs ourselves nor did we have adminis-

trative access to the GPU. The GPU was housed in a school server so we had no idea were

libraries where they were installed or how they were configured.

Lack of documentation

This was a problem only for cuDNN, there is documentation on what the framework’s

functions output and what arguments they require but how you put them together is not

initially clear. There exists very few examples of how to use the API.

Lack of background knowledge

For Jack and Justin, this was the first time that they had been exposed to CNNs and deep

learning in general. This lead to a trial by fire where they had to develop a basic understanding

very quickly in a short amount of time, at least enough to create a neural network using their

designated frameworks in Python.

Inconveniences

Not exactly a problem, but because we did testing and everything on the server we do not

have free access to download libraries that would allow us to use convenient functions to do

things like download MNIST, showcase images from the terminal, functions that would allow

us to focus more on the actual CNN creation and testing.

Page 7 of 7

